Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.527
Filtrar
1.
Mol Neurodegener ; 19(1): 38, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658964

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS: We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS: We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS: Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.


Assuntos
Imunidade Adaptativa , Doença de Alzheimer , Disfunção Cognitiva , Progressão da Doença , Humanos , Doença de Alzheimer/imunologia , Doença de Alzheimer/líquido cefalorraquidiano , Idoso , Masculino , Disfunção Cognitiva/imunologia , Feminino , Imunidade Adaptativa/imunologia , Biomarcadores/líquido cefalorraquidiano , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade
2.
Cell ; 186(20): 4260-4270, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37729908

RESUMO

Recent Aß-immunotherapy trials have yielded the first clear evidence that removing aggregated Aß from the brains of symptomatic patients can slow the progression of Alzheimer's disease. The clinical benefit achieved in these trials has been modest, however, highlighting the need for both a deeper understanding of disease mechanisms and the importance of intervening early in the pathogenic cascade. An immunoprevention strategy for Alzheimer's disease is required that will integrate the findings from clinical trials with mechanistic insights from preclinical disease models to select promising antibodies, optimize the timing of intervention, identify early biomarkers, and mitigate potential side effects.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/imunologia , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Anticorpos/uso terapêutico , Imunoterapia , Animais
3.
Artigo em Inglês | MEDLINE | ID: mdl-37311646

RESUMO

BACKGROUND & OBJECTIVES: Autoimmune encephalitis (AIE) may present with prominent cognitive disturbances without overt inflammatory changes in MRI and CSF. Identification of these neurodegenerative dementia diagnosis mimics is important because patients generally respond to immunotherapy. The objective of this study was to determine the frequency of neuronal antibodies in patients with presumed neurodegenerative dementia and describe the clinical characteristics of the patients with neuronal antibodies. METHODS: In this retrospective cohort study, 920 patients were included with neurodegenerative dementia diagnosis from established cohorts at 2 large Dutch academic memory clinics. In total, 1,398 samples were tested (both CSF and serum in 478 patients) using immunohistochemistry (IHC), cell-based assays (CBA), and live hippocampal cell cultures (LN). To ascertain specificity and prevent false positive results, samples had to test positive by at least 2 different research techniques. Clinical data were retrieved from patient files. RESULTS: Neuronal antibodies were detected in 7 patients (0.8%), including anti-IgLON5 (n = 3), anti-LGI1 (n = 2), anti-DPPX, and anti-NMDAR. Clinical symptoms atypical for neurodegenerative diseases were identified in all 7 and included subacute deterioration (n = 3), myoclonus (n = 2), a history of autoimmune disease (n = 2), a fluctuating disease course (n = 1), and epileptic seizures (n = 1). In this cohort, no patients with antibodies fulfilled the criteria for rapidly progressive dementia (RPD), yet a subacute deterioration was reported in 3 patients later in the disease course. Brain MRI of none of the patients demonstrated abnormalities suggestive for AIE. CSF pleocytosis was found in 1 patient, considered as an atypical sign for neurodegenerative diseases. Compared with patients without neuronal antibodies (4 per antibody-positive patient), atypical clinical signs for neurodegenerative diseases were seen more frequently among the patients with antibodies (100% vs 21%, p = 0.0003), especially a subacute deterioration or fluctuating course (57% vs 7%, p = 0.009). DISCUSSION: A small, but clinically relevant proportion of patients suspected to have neurodegenerative dementias have neuronal antibodies indicative of AIE and might benefit from immunotherapy. In patients with atypical signs for neurodegenerative diseases, clinicians should consider neuronal antibody testing. Physicians should keep in mind the clinical phenotype and confirmation of positive test results to avoid false positive results and administration of potential harmful therapy for the wrong indication.


Assuntos
Autoanticorpos , Doenças Autoimunes do Sistema Nervoso , Demência , Neurônios , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/imunologia , Autoanticorpos/análise , Autoanticorpos/imunologia , Doenças Autoimunes do Sistema Nervoso/complicações , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/imunologia , Demência/complicações , Demência/diagnóstico , Demência/imunologia , Progressão da Doença , Demência Frontotemporal/complicações , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/imunologia , Estudos Retrospectivos , Países Baixos , Neurônios/imunologia , Reprodutibilidade dos Testes , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
5.
Nature ; 615(7953): 668-677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890231

RESUMO

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Assuntos
Encéfalo , Microglia , Emaranhados Neurofibrilares , Linfócitos T , Tauopatias , Animais , Camundongos , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Microglia/imunologia , Microglia/metabolismo , Emaranhados Neurofibrilares/imunologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/imunologia , Proteínas tau/metabolismo , Tauopatias/imunologia , Tauopatias/metabolismo , Tauopatias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Inata
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614325

RESUMO

Alzheimer's Disease (AD) is the most common cause of dementia, having a remarkable social and healthcare burden worldwide. Amyloid ß (Aß) and protein Tau aggregates are disease hallmarks and key players in AD pathogenesis. However, it has been hypothesized that microglia can contribute to AD pathophysiology, as well. Microglia are CNS-resident immune cells belonging to the myeloid lineage of the innate arm of immunity. Under physiological conditions, microglia are in constant motion in order to carry on their housekeeping function, and they maintain an anti-inflammatory, quiescent state, with low expression of cytokines and no phagocytic activity. Upon various stimuli (debris, ATP, misfolded proteins, aggregates and pathogens), microglia acquire a phagocytic function and overexpress cytokine gene modules. This process is generally regarded as microglia activation and implies that the production of pro-inflammatory cytokines is counterbalanced by the synthesis and the release of anti-inflammatory molecules. This mechanism avoids excessive inflammatory response and inappropriate microglial activation, which causes tissue damage and brain homeostasis impairment. Once the pathogenic stimulus has been cleared, activated microglia return to the naïve, anti-inflammatory state. Upon repeated stimuli (as in the case of Aß deposition in the early stage of AD), activated microglia shift toward a less protective, neurotoxic phenotype, known as "primed" microglia. The main characteristic of primed microglia is their lower capability to turn back toward the naïve, anti-inflammatory state, which makes these cells prone to chronic activation and favours chronic inflammation in the brain. Primed microglia have impaired defence capacity against injury and detrimental effects on the brain microenvironment. Additionally, priming has been associated with AD onset and progression and can represent a promising target for AD treatment strategies. Many factors (genetics, environmental factors, baseline inflammatory status of microglia, ageing) generate an aberrantly activated phenotype that undergoes priming easier and earlier than normally activated microglia do. Novel, promising targets for therapeutic strategies for AD have been sought in the field of microglia activation and, importantly, among those factors influencing the baseline status of these cells. The CX3CL1 pathway could be a valuable target treatment approach in AD, although preliminary findings from the studies in this field are controversial. The current review aims to summarize state of the art on the role of microglia dysfunction in AD pathogenesis and proposes biochemical pathways with possible targets for AD treatment.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Microglia/imunologia
8.
Nutrients ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631163

RESUMO

BACKGROUND: One of the main features of Alzheimer's disease (AD) pathology is failure in innate immune response and chronic inflammation. Lack of effective AD treatment means that more attention is paid to alternative therapy and drugs of natural origin, such as extract of Ginkgo biloba (EGb). The purpose of this study was to investigate the effect of EGb on the mechanisms of innate immune response of peripheral blood leukocytes (PBLs) in AD patients. METHODS: In AD patients and healthy-age matched controls, the effect of EGb on two of innate immune reactions, i.e., PBLs resistance to viral infection ex vivo and production of cytokines, namely TNF-α, IFN-γ, IL-1ß, IL-10, IL-15, and IFN-α, were investigated. The influence of EGb on inflammatory-associated genes expression that regulate innate immune response to viral infection and cytokine production, namely IRF-3, IRF-7, tetherin, SOCS1, SOCS3, NFKB1, p65, and MxA was also examined. RESULTS: A beneficial effect of EGb especially in AD women was observed. EGb decreased production of TNF-α, IFN-γ, and IL-10 and increased IL-15 and IL-1ß. The effect was more pronouncement in AD group. EGb also downregulated expression of investigated genes. CONCLUSIONS: EGb may have an advantageous properties for health management in elderly and AD sufferers but especially in women with AD. Improving peripheral innate immune cells' activity by adding EGb as accompanying treatment in AD may be, in the long term, a good course to modify the disease progression.


Assuntos
Doença de Alzheimer , Ginkgo biloba , Imunidade Inata , Extratos Vegetais , Doença de Alzheimer/imunologia , Feminino , Ginkgo biloba/química , Humanos , Interleucina-10 , Interleucina-15 , Leucócitos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator de Necrose Tumoral alfa
9.
J Neuroinflammation ; 19(1): 98, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459141

RESUMO

Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of neurons, which eventually lead to dysfunction. These diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A (IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neurodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration drugs.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Interleucina-17 , Doença de Parkinson , Células Th17 , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Esclerose Amiotrófica Lateral/imunologia , Esclerose Amiotrófica Lateral/patologia , Humanos , Interleucina-17/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doença de Parkinson/imunologia , Células Th17/imunologia
10.
Curr Med Sci ; 42(1): 39-47, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35122611

RESUMO

OBJECTIVE: Angelica (A.) sinensis is used as a traditional medical herb for the treatment of neurodegeneration, aging, and inflammation in Asia. A. sinensis optimal formula (AOF) is the best combination in A. sinensis that has been screened to rescue the cognitive ability in ß-amyloid peptide (Aß25-35)-treated Alzheimer's disease (AD) rats. The objective of this study was to investigate the effect of AOF on the learning and memory of AD rats as well as to explore the underlying mechanisms. METHODS: Male Wistar rats were infused with Aß25-35 for AD model induction or saline (negative control). Five groups of AD rats were fed on AOF at 20, 40, or 80 mL/kg every day, donepezil at 0.9 mg/kg every day (positive control), or an equal volume of water (AD model) intragastrically once a day for 4 weeks, while the negative control rats were fed on water. The Morris water maze test was used to evaluate the cognitive function of the rats. The Aß accumulation, cholinergic levels, and antioxidative ability were detected by ELISA. Additionally, the candidate mechanism was determined by gene sequencing and quantitative real-time polymerase chain reaction. RESULTS: The results showed that AOF administration significantly ameliorated Aß25-35-induced memory impairment. AOF decreased the levels of amyloid-ß precursor protein and Aß in the hippocampus, rescued the cholinergic levels, increased the activity of superoxide dismutase, and decreased the malondialdehyde level. In addition, AOF inhibited the expression of IL1b, Mpo, and Prkcg in the hippocampus. CONCLUSION: These experimental findings illustrate that AOF prevents the decrease in cognitive function and Aß deposits in Aß25-35-treated rats via modulating neuroinflammation and oxidative stress, thus highlighting a potential therapeutic avenue to promote the co-administration of formulas that act on different nodes to maximize beneficial effects and minimize negative side effects.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/farmacologia , Angelica sinensis , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/imunologia , Transtornos da Memória/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Nootrópicos/administração & dosagem , Preparações de Plantas/administração & dosagem , Ratos , Ratos Wistar
11.
Front Immunol ; 13: 837250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185929

RESUMO

Immune cells are present within the central nervous system and play important roles in neurological inflammation and disease. As relatively new described immune cell population, Innate Lymphoid Cells are now increasingly recognized within the central nervous system and associated diseases. Innate Lymphoid Cells are generally regarded as tissue resident and early responders, while conversely within the central nervous system at steady-state their presence is limited. This review describes the current understandings on Innate Lymphoid Cells in the central nervous system at steady-state and its borders plus their involvement in major neurological diseases like ischemic stroke, Alzheimer's disease and Multiple Sclerosis.


Assuntos
Doença de Alzheimer/imunologia , Sistema Nervoso Central/imunologia , AVC Isquêmico/imunologia , Linfócitos/imunologia , Esclerose Múltipla/imunologia , Animais , Humanos , Imunidade Inata
12.
Int J Med Sci ; 19(1): 112-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975305

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive impairment and memory loss, for which there is no effective cure to date. In the past several years, numerous studies have shown that increased inflammation in AD is a major cause of cognitive impairment. This study aimed to reveal 22 kinds of peripheral immune cell types and key genes associated with AD. The prefrontal cortex transcriptomic data from Gene Expression Omnibus (GEO) database were collected, and CIBERSORT was used to assess the composition of 22 kinds of immune cells in all samples. Weighted gene co-expression network analysis (WGCNA) was used to construct gene co-expression networks and identified candidate module genes associated with AD. The least absolute shrinkage and selection operator (LASSO) and random forest (RF) models were constructed to analyze candidate module genes, which were selected from the result of WGCNA. The results showed that the immune infiltration in the prefrontal cortex of AD patients was different from healthy samples. Of all 22 kinds of immune cells, M1 macrophages were the most relevant cell type to AD. We revealed 10 key genes associated with AD and M1 macrophages by LASSO and RF analysis, including ARMCX5, EDN3, GPR174, MRPL23, RAET1E, ROD1, TRAF1, WNT7B, OR4K2 and ZNF543. We verified these 10 genes by logistic regression and k-fold cross-validation. We also validated the key genes in an independent dataset, and found GPR174, TRAF1, ROD1, RAET1E, OR4K2, MRPL23, ARMCX5 and EDN3 were significantly different between the AD and healthy controls. Moreover, in the 5XFAD transgenic mice, the differential expression trends of Wnt7b, Gpr174, Ptbp3, Mrpl23, Armcx5 and Raet1e are consistent with them in independent dataset. Our results provided potential therapeutic targets for AD patients.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Córtex Pré-Frontal/imunologia , Animais , Feminino , Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Transporte de Íons , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-35091466

RESUMO

BACKGROUND AND OBJECTIVES: This [18F]fluorodeoxyglucose (FDG) PET study evaluates the accuracy of semiquantitative measurement of putaminal hypermetabolism in identifying anti-leucine-rich, glioma-inactivated-1 (LGI1) protein autoimmune encephalitis (AE). In addition, the extent of brain dysmetabolism, their association with clinical outcomes, and longitudinal metabolic changes after immunotherapy in LGI1-AE are examined. METHODS: FDG-PET scans from 49 age-matched and sex-matched subjects (13 in LGI1-AE group, 15 in non-LGI1-AE group, 11 with Alzheimer disease [AD], and 10 negative controls [NCs]) and follow-up scans from 8 patients with LGI1 AE on a median 6 months after immunotherapy were analyzed. Putaminal standardized uptake value ratios (SUVRs) normalized to global brain (P-SUVRg), thalamus (P/Th), and midbrain (P/Mi) were evaluated for diagnostic accuracy. SUVRg was applied for all other analyses. RESULTS: P-SUVRg, P/Th, and P/Mi were higher in LGI1-AE group than in non-LGI1-AE group, AD group, and NCs (all p < 0.05). P/Mi and P-SUVRg differentiated LGI1-AE group robustly from other groups (areas under the curve 0.84-0.99). Mediotemporal lobe (MTL) SUVRg was increased in both LGI1-AE and non-LGI1-AE groups when compared with NCs (both p < 0.05). SUVRg was decreased in several frontoparietal regions and increased in pallidum, caudate, pons, olfactory, and inferior occipital gyrus in LGI1-AE group when compared with that in NCs (all p < 0.05). In LGI1-AE group, both MTL and putaminal hypermetabolism were reduced after immunotherapy. Normalization of regional cortical dysmetabolism associated with clinical improvement at the 6- and 20-month follow-up. DISCUSSION: Semiquantitative measurement of putaminal hypermetabolism with FDG-PET may be used to distinguish LGI1-AE from other pathologies. Metabolic abnormalities in LGI1-AE extend beyond putamen and MTL into other subcortical and cortical regions. FDG-PET may be used in evaluating disease evolution in LGI1-AE. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that semiquantitative measures of putaminal metabolism on PET can differentiate patients with LGI1-AE from patients without LGI1-AE, patients with AD, or NCs.


Assuntos
Doença de Alzheimer , Córtex Cerebral/metabolismo , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central , Encefalite , Peptídeos e Proteínas de Sinalização Intracelular , Mesencéfalo/metabolismo , Putamen/metabolismo , Adolescente , Adulto , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Autoanticorpos , Córtex Cerebral/diagnóstico por imagem , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico por imagem , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/fisiopatologia , Eletroencefalografia , Encefalite/diagnóstico por imagem , Encefalite/imunologia , Encefalite/metabolismo , Encefalite/fisiopatologia , Feminino , Seguimentos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Estudos Retrospectivos , Adulto Jovem
14.
Sci Rep ; 12(1): 1312, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079008

RESUMO

Autoantibodies are self-antigen reactive antibodies that play diverse roles in the normal immune system, tissue homeostasis, and autoimmune and neurodegenerative diseases. Anti-neuronal autoantibodies have been detected in neurodegenerative disease serum, with unclear significance. To identify diagnostic biomarkers of Alzheimer's disease (AD), we analyzed serum autoantibody profiles of the HuProt proteome microarray using the discovery set of cognitively normal control (NC, n = 5) and AD (n = 5) subjects. Approximately 1.5-fold higher numbers of autoantibodies were detected in the AD group (98.0 ± 39.9/person) than the NC group (66.0 ± 39.6/person). Of the autoantigen candidates detected in the HuProt microarray, five autoantigens were finally selected for the ELISA-based validation experiment using the validation set including age- and gender-matched normal (NC, n = 44), mild cognitive impairment (MCI, n = 44) and AD (n = 44) subjects. The serum levels of four autoantibodies including anti-ATCAY, HIST1H3F, NME7 and PAIP2 IgG were significantly different among NC, MCI and/or AD groups. Specifically, the anti-ATCAY autoantibody level was significantly higher in the AD (p = 0.003) and MCI (p = 0.015) groups compared to the NC group. The anti-ATCAY autoantibody level was also significantly correlated with neuropsychological scores of MMSE (rs = - 0.229, p = 0.012), K-MoCA (rs = - 0.270, p = 0.003), and CDR scores (rs = 0.218, p = 0.016). In addition, a single or combined occurrence frequency of anti-ATCAY and anti-PAIP2 autoantibodies was significantly associated with the risk of MCI and AD. This study indicates that anti-ATCAY and anti-PAIP2 autoantibodies could be a potential diagnostic biomarker of AD.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/imunologia , Autoanticorpos/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/imunologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Autoanticorpos/imunologia , Biomarcadores/sangue , Estudos de Casos e Controles , Disfunção Cognitiva/epidemiologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Proteoma , República da Coreia/epidemiologia , Fatores de Risco
15.
J Alzheimers Dis ; 85(2): 645-665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34864659

RESUMO

BACKGROUND: Late-onset Alzheimer's disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. OBJECTIVE: This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. METHODS: This study involved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using Real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. RESULTS: A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. CONCLUSION: The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.


Assuntos
Doença de Alzheimer/genética , Leucócitos Mononucleares/metabolismo , Células Th17/metabolismo , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Estudos de Casos e Controles , Feminino , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Células Th17/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-34848502

RESUMO

BACKGROUND AND OBJECTIVES: Patients with Alzheimer dementia display evidence of amyloid-related neurodegeneration. Our focus was to determine whether such patients also display evidence of a disease-targeting adaptive immune response mediated by CD4+ T cells. To test this hypothesis, we evaluated the CSF immune profiles of patients with Alzheimer clinical syndrome (ACS), who display clinically defined dementia. METHODS: Innate and adaptive immune profiles of patients with ACS were measured using multicolor flow cytometry. CSF-derived CD4+ and CD8+ T-cell receptor repertoire genetics were measured using next-generation sequencing. Brain-specific autoantibody signatures of CSF-derived antibody pools were measured using array technology or ELISA. CSF from similar-age healthy controls (HCs) was used as a comparator cohort. RESULTS: Innate cells were expanded in the CSF of patients with ACS in comparison to HCs, and innate cell expansion increased with age in the patients with ACS, but not HCs. Despite innate cell expansion in the CSF, the frequency of total CD4+ T cells reduced with age in the patients with ACS. T-cell receptor repertoire genetics indicated that T-cell clonal expansion is enhanced, and diversity is reduced in the patients with ACS compared with similar-age HCs. DISCUSSION: Examination of CSF indicates that CD4+ T cell-mediated adaptive immune responses are altered in patients with ACS. Understanding the underlying mechanisms affecting adaptive immunity will help move us toward the goal of slowing cognitive decline.


Assuntos
Imunidade Adaptativa/imunologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/imunologia , Autoanticorpos/líquido cefalorraquidiano , Linfócitos T CD4-Positivos/metabolismo , Imunidade Inata/imunologia , Idoso , Linfócitos T CD8-Positivos/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome
17.
Artigo em Inglês | MEDLINE | ID: mdl-34358623

RESUMO

Inflammation is involved in the pathogenesis of psychiatric disorders. Many previous studies have defined the important roles of inflammatory factors in the pathogenesis, diagnosis, and treatment outcomes of psychiatric disorders. Macrophage migration inhibitory factor (MIF), a pro-inflammatory factor, has been gradually recognized to be involved in the development of neurological diseases in recent years. Our current review focuses on discussing the potential beneficial and detrimental roles of MIF in psychiatric disorders. We will provide new mechanistic insights for the development of potential diagnostic and therapeutic biomarkers based on MIF for psychiatric diseases.


Assuntos
Biomarcadores , Inflamação , Fatores Inibidores da Migração de Macrófagos/imunologia , Transtornos Mentais/imunologia , Doença de Alzheimer/imunologia , Animais , Depressão/imunologia , Humanos , Doenças do Sistema Nervoso , Esquizofrenia/imunologia
18.
Gene ; 808: 145972, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600048

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia and neuroinflammation is considered as one of the main culprits. The aim of this study was to evaluate the independent role of Aß42 and tau on the inflammatory pathway in the Drosophila models of AD and investigating the potential modulating effect of M2000 as a novel NSAIDs in those flies. The expression levels of relish, orthologs of NF-κB, antimicrobial peptide (AMP) including attacin A, diptericin B and a dual oxidase (Duox) as a ROS mediator, were evaluated in both M2000 treated and untreated groups followed by brain histology analysis to assess the extent of neurodegeneration. The potential inhibitory role of M2000 (ß-D Mannuronic acid) on the aggregation of tau protein was also investigated in vitro. According to the result, there was a significant induction of Duox, AMPs and its transcription factor expression in both aged and Drosophila models of AD which was in accordance with the increase in the number of vacuoles in the brain section of Drosophila models of AD. Interestingly M2000 treatment revealed a significant reduction in all neurodegeneration indexes; in vivo and anti-aggregating property; in vitro. Findings suggest that M2000 has potential to be an AD therapeutic agent.


Assuntos
Doença de Alzheimer/genética , Ácidos Hexurônicos/metabolismo , Imunidade Inata/genética , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Proteínas de Drosophila , Drosophila melanogaster , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Ácidos Hexurônicos/farmacologia , Imunidade Inata/imunologia , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Rev. Hosp. Clin. Univ. Chile ; 33(3): 189-199, 2022. ilus
Artigo em Espanhol | LILACS | ID: biblio-1411116

RESUMO

Alzheimer disease (AD) is the main cause of dementia worldwide and a source of important population morbidity and mortality. It is estimate that its prevalence will increase dramatically in the upcoming years. The classical clinical presentation of AD is an amnesic hippocampal syndrome, and Mild Cognitive impairment (MCI) is considered the initial stage between normal cognition and dementia. The most accepted pathogenesis establishes amyloid beta (Ab) deposition in brain parenchyma as the initial mechanism, followed by the intracellular accumulation of hyperphosphorylated tau finally leading to the loss of synapses and neurons. Recently, the study of AD pathogenesis is focusing on immune mechanisms as main actors of disease development. Microglia is the macrophagic resident cell in the central nervous system (CNS), and initiates the inflammatory response and Ab phagocytosis, interacting with other glia and recruiting diverse immune cells to the CNS. The role of the adaptive immune system, and, especially T lymphocytes' role, is still controversial. We hypothesize that the pathogenesis of AD is dynamic; with a preponderant proinflammatory activity initially, but later on, the persistent presence of Ab due to the lack of its proper elimination leads to a phenomena of lymphocyte dysfunction and immunological tolerance that have a deleterious role at advanced stages of the disease. (AU)


Assuntos
Humanos , Masculino , Feminino , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/imunologia , Demência/imunologia
20.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948444

RESUMO

Alzheimer's disease is a type of dementia characterized by problems with short-term memory, cognition, and difficulties with activities of daily living. It is a progressive, neurodegenerative disorder. The complement system is an ancient part of the innate immune system and comprises of more than thirty serum and membrane-bound proteins. This system has three different activating pathways and culminates into the formation of a membrane attack complex that ultimately causes target cell lysis (usually pathogens) The complement system is involved in several important functions in the central nervous system (CNS) that include neurogenesis, synaptic pruning, apoptosis, and neuronal plasticity. Here, we discuss how the complement system is involved in the effective functioning of CNS, while also contributing to chronic neuroinflammation leading to neurodegenerative disorders such as Alzheimer's disease. We also discuss potential targets in the complement system for stopping its harmful effects via neuroinflammation and provide perspective for the direction of future research in this field.


Assuntos
Doença de Alzheimer/imunologia , Proteínas do Sistema Complemento/metabolismo , Regulação da Expressão Gênica , Humanos , Neurogênese , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...